Skip to main content

Read The Hacker News in efficient way using Python Programming.


import requests
from bs4 import BeautifulSoup 
import pprint
url='https://news.ycombinator.com/'
url2='https://news.ycombinator.com/news?p=2'
res=requests.get(url)
res2=requests.get(url2)

soup=BeautifulSoup(res.text,'html.parser')
soup2=BeautifulSoup(res2.text,'html.parser')
links=soup.select('.storylink')
subtext=soup.select('.subtext')
links2=soup2.select('.storylink')
subtext2=soup2.select('.subtext')

def sorting_votes(hnlist):
  return sorted(hnlist,key=lambda k:k['votes'],reverse=True)
megalinks=links + links2
megasubtext=subtext+subtext2

def custom_hn(links,subtext):
  hn=[]
  for idx,item in enumerate(links):
    title=links[idx].getText()
    href=links[idx].get('href',None)
    vote=subtext[idx].select('.score')
    
    if len(vote):
      points=int(vote[0].getText().replace(' points',''))
      if points >100:
        hn.append({'tittle':title, 'link': href, 'votes':points})
  return sorting_votes(hn)

pprint.pprint(custom_hn(megalinks,megasubtext))




#Advantages You don't need to read all the unnecessary links, you can filter them out
and read-only popular one with chronological order.

Comments

Popular posts from this blog

Make a Translator using python?

CODE : pip install translate create a new script file eg. english in the same directory. from translate import Translator translator=Translator( to_lang = "hi" ) with open ( './english.txt' , 'r' ) as file2: text=file2.read() translation=translator.translate(text) print(translation) or another way  jj= str ( input ( 'enter th english' )) from translate import Translator translator=Translator( to_lang = "hi" ) with open ( './english.txt' , 'w' ) as file2: file2.write( f'-- { jj } ' ) with open ( './english.txt' , 'r' ) as file2: text = file2.read() translation=translator.translate(text) print (translation) DEMO:

Image Identify using machine learning in Python.

#pip install imageai #pip install Tensorflow #pip install keras from  imageai.Prediction  import  ImagePrediction import  os from  keras.models  import  load_model Givenimage= "picc.jpg" execution_path=os.getcwd() #print(execution_path) prediction = ImagePrediction() prediction.setModelTypeAsSqueezeNet() prediction.setModelPath(os.path.join(execution_path,  "squeezenet_weights_tf_dim_ordering_tf_kernels.h5" )) prediction.loadModel() predictions, probabilities = prediction.predictImage(os.path.join(execution_path, Givenimage), result_count= 3  ) for  eachPrediction, eachProbability  in   zip (predictions, probabilities):      print (eachPrediction ,  " : "  , eachProbability)   Result: WARNING:tensorflow:11 out of the last 11 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7f941e211598> tr...

Projectile motion using LabVIEW

A projectile is projected with a velocity of V (in m/s) and at an angle  (in degree) to the horizontal. Build a VI to compute (i) Maximum height reached (in meters), (ii) Time of flight (in seconds) and (iii) Range of the projectile (in meters).